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quadtree-package Quadtree Representation of Rasters

Description

This package provides functionality for working with raster-like quadtrees (also called “region
quadtrees”), which allow for variable-sized cells. The package allows for flexibility in the quadtree
creation process. Several functions defining how to split and aggregate cells are provided, and
custom functions can be written for both of these processes. In addition, quadtrees can be created
using other quadtrees as “templates”, so that the new quadtree’s structure is identical to the template
quadtree. The package also includes functionality for modifying quadtrees, querying values, saving
quadtrees to a file, and calculating least-cost paths using the quadtree as a resistance surface.

Vignettes are included that demonstrate the functionality contained in the package - these are in-
tended to serve as an introduction to using the quadtree package. You can see the available vi-
gnettes by running vignette(package = "quadtree") and view individual vignettes using vignette("vignette-name",
package = "quadtree").

I’d recommend reading the vignettes in the following order:

1. "quadtree-creation"

2. "quadtree-usage"

3. "quadtree-lcp"

A fourth vignette called "quadtree-code" is also available. This briefly discusses the structure of
the package. It is not necessary for using the package but may be useful for those who want more
details about the code.

add_legend Add a gradient legend to a plot

Description

Adds a gradient legend to a plot.

Usage

add_legend(
zlim,
col,
alpha = 1,
lgd_box_col = NULL,
lgd_x_pct = 0.5,
lgd_y_pct = 0.5,
lgd_wd_pct = 0.5,
lgd_ht_pct = 0.5,
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bar_box_col = "black",
bar_wd_pct = 0.2,
bar_ht_pct = 1,
text_cex = 1,
text_col = NULL,
text_font = NULL,
text_x_pct = 1,
ticks = NULL,
ticks_n = 5

)

Arguments

zlim two-element numeric vector; required; the min and max value of z

col character vector; required; the colors that will be used in the legend.

alpha numeric; transparency of the colors. Must be in the range 0-1, where 0 is fully
transparent and 1 is fully opaque. Default is 1.

lgd_box_col character; color of the box to draw around the entire legend. If NULL (the de-
fault), no box is drawn

lgd_x_pct numeric; location of the center of the legend in the x-dimension, as a fraction (0
to 1) of the right margin area, not the entire width of the figure

lgd_y_pct numeric; location of the center of the legend in the y-dimension, as a fraction
(0 to 1). Unlike lgd_x_pct, this is relative to the entire figure height (since the
right margin area spans the entire vertical dimension)

lgd_wd_pct numeric; width of the entire legend, as a fraction (0 to 1) of the right margin
width

lgd_ht_pct numeric; height of the entire legend, as a fraction (0 to 1) of the figure height

bar_box_col character; color of the box to draw around the color bar. If NULL, no box is drawn

bar_wd_pct numeric; width of the color bar, as a fraction (0 to 1) of the width of the legend
area (not the entire right margin width)

bar_ht_pct numeric; height of the color bar, as a fraction (0 to 1) of the height of the legend
area (not the entire right margin height)

text_cex numeric; size of the legend text. Default is 1.

text_col character; color of the legend text. Default is "black".

text_font integer; specifies which font to use. See par() for more details.

text_x_pct numeric; the x-placement of the legend text as a fraction (0 to 1) of the width
of the legend area. This corresponds to the right-most part of the text - i.e. a
value of 1 means the text will end exactly at the right border of the legend area.
Default is 1.

ticks numeric vector; the z-values at which to place tick marks. If NULL (the default),
tick placement is automatically calculated

ticks_n integer; the number of ticks desired - only used if ticks is NULL. Note that this
is an approximate number - the pretty() function is used to generate "nice-
looking" values, but it doesn’t guarantee a set number of tick marks
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Details

I took an HTML/CSS-like approach to determining the positioning - that is, each space is treated as
<div>-like space, and the position of objects within that space happens relative to that space rather
than the entire space. The parameters prefixed by lgd are all relative to the right margin space and
correspond to the box that contains the entire legend. The parameters prefixed by bar and ticks
are relative to the space within the legend box.

This function is used within plot(), so the user shouldn’t call this function to manually create
the legend. Customizations to the legend can be done via the legend_args parameter of plot().
Using this function to plot the legend after using plot() raises the possibility of the legend not
corresponding correctly with the plot, and thus should be avoided.

Value

no return value

Examples

library(terra)
library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))
qt <- quadtree(habitat, .2)

old_par <- par(mar = c(5, 4, 4, 5))
plot(qt, legend = FALSE)
leg <- terra::minmax(habitat)[1:2]
quadtree::add_legend(leg, rev(terrain.colors(100)))
par(old_par)
# this example simply illustrates how it COULD be used, but as stated in the
# 'Details' section, it shouldn't be called separately from 'plot()' - if
# customizations to the legend are desired, use the 'legend_args' parameter
# of 'plot()'.

as_data_frame Convert a Quadtree to a data frame

Description

Creates a data frame with information on each quadtree cell.

Usage

## S4 method for signature 'Quadtree'
as_data_frame(x, terminal_only = TRUE)

Arguments

x a Quadtree

terminal_only boolean; if TRUE (the default) only information on terminal cells is returned. If
FALSE, information on all cells is returned.
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Value

A data frame with one row for each quadtree cell. The columns are as follows:

• id: the id of the cell
• hasChildren: 1 if the cell has children, 0 otherwise
• level: integer; the depth of this cell/node in the quadtree, where the root of the quadtree is

considered to be level 0
• xmin, xmax, ymin, ymax: the x and y limits of the cell
• value: the value of the cell
• smallestChildLength: the smallest cell length among all of this cell’s descendants
• parentID: the ID of the cell’s parent. The root, which has no parent, has a value of -1 for this

column

See Also

as_vector() returns all the cell values as a numeric vector.

Examples

library(quadtree)

mat <- rbind(c(1, 1, 0, 1),
c(1, 1, 1, 0),
c(1, 0, 1, 1),
c(0, 1, 1, 1))

qt <- quadtree(mat, .1)
plot(qt)
as_data_frame(qt)

as_raster Create a raster from a Quadtree

Description

Creates a SpatRaster from a Quadtree.

Usage

## S4 method for signature 'Quadtree'
as_raster(x, rast = NULL)

Arguments

x a Quadtree

rast a SpatRaster or RasterLayer; optional; this will be used as a template - the
output raster will have the same extent and dimensions as this raster. If NULL
(the default), a raster is automatically created, where the quadtree extent is used
as the raster extent, and the size of smallest cell in the quadtree is used as the
resolution of the raster.
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Details

Note that the value of a raster cell is determined by the value of the quadtree cell located at the
centroid of the raster cell - thus, if a raster cell overlaps several quadtree cells, whichever quadtree
cell the centroid of the raster cell falls in will determine the raster cell’s value. If no value is provided
for the rast parameter, the raster’s dimensions are automatically determined from the quadtree in
such a way that the cells are guaranteed to line up with the quadtree cells with no overlap, thus
avoiding the issue.

Value

a SpatRaster

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create a quadtree
qt <- quadtree(habitat, split_threshold = .1, split_method = "sd")

rst1 <- as_raster(qt) # use the default raster
rst2 <- as_raster(qt, habitat) # use another raster as a template

old_par <- par(mfrow = c(2, 2))
plot(habitat, main = "original raster")
plot(qt, main = "quadtree")
plot(rst1, main = "raster from quadtree")
plot(rst2, main = "raster from quadtree")
par(old_par)

as_sf Convert to other R spatial objects

Description

Convert to other R spatial objects

Usage

as_sf(x)

as_vect(x)

as_character(x)

Arguments

x Quadtree object
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Value

an object of class sf or SpatVector, or a Well-Known Text (WKT) character representation

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .1)
sf <- as(qt, "sf")
sr <- as(qt, "SpatRaster")
sv <- as(qt, "SpatVector")
ch <- as(qt, "character")

as_vector Get all Quadtree cell values as a vector

Description

Returns all cell values of a Quadtree as a numeric vector.

Usage

## S4 method for signature 'Quadtree'
as_vector(x, terminal_only = TRUE)

Arguments

x a Quadtree

terminal_only boolean; if TRUE (the default) only values of terminal cells are returned. If
FALSE, all cell values are returned.

Value

a numeric vector

See Also

as_data_frame creates a data frame from a Quadtree that has all the cell values as well as details
about each cell’s size and extent.

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .2)
head(as_vector(qt), 20)
head(as_vector(qt, FALSE), 20)
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copy Create a deep copy of a Quadtree

Description

Creates a deep copy of a Quadtree.

Usage

## S4 method for signature 'Quadtree'
copy(x)

Arguments

x a Quadtree

Details

This function creates a deep copy of a Quadtree object. The Quadtree class contains a pointer to a
CppQuadtree C++ object. If a copy is attempted by simply assigning the quadtree to a new variable,
it will simply make a copy of the pointer, and both variables will point to the same CppQuadtree.
Thus, changes made to one will also change the other. See "Examples" for a demonstration of this.

This function creates a deep copy by copying the entire quadtree, and should be used whenever a
copy of a quadtree is desired.

Value

a Quadtree

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create a quadtree, then create a shallow copy and a deep copy
qt1 <- quadtree(habitat, split_threshold = .1)
plot(qt1)

qt2 <- qt1 # SHALLOW copy
qt3 <- copy(qt1) # DEEP copy

# change the values of qt1 so we can observe how this affects qt2 and qt3
transform_values(qt1, function(x) 1 - x)

# plot it out to see what happened
old_par <- par(mfrow = c(1, 3))
plot(qt1, main = "qt1", border_col = "transparent")
plot(qt2, main = "qt2", border_col = "transparent")
plot(qt3, main = "qt3", border_col = "transparent")
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par(old_par)
# qt2 was modified but qt3 was not

CppLcpFinder-class CppLcpFinder: C++ LCP finder

Description

CppLcpFinder is a C++ class for finding least-cost paths (LCPs) using a Quadtree as a resistance
surface. The average user should not need to interact with this class at all - all of the LCP function-
ality is made available through the LcpFinder S4 class.

Details

This class is defined in ’src/LcpFinderWrapper.h’ and ’src/LcpFinderWrapper.cpp’. When made
available to R, it is exposed as CppLcpFinder rather than LcpFinderWrapper. LcpFinderWrapper
contains a pointer to a LcpFinder C++ object (defined in ’src/LcpFinder.h’ and ’src/LcpFinder.cpp’).
All of the core functionality is in the LcpFinder C++ class. LcpFinderWrapper is a wrapper class
that adds the ’Rcpp’ code required for it to be accessible from R.

Note that there is no constructor made accessible to R - a CppLcpFinder is created by using the
getLcpFinder method of the CppQuadtree class.

Fields

getAllPathsSummary • Description: Returns a matrix summarizing all the LCPs calculated
so far. summarize_lcps() is a wrapper for this function - see documentation of that
function for more details.

• Parameters: none
• Returns: a matrix with one row per LCP. See documentation of summarize_lcps() for

details.

getLcp • Description: Finds the LCP from the starting point to another point. find_lcp is a
wrapper for this function - see its documentation for more details.

• Parameters:
– endPoint: two-element numeric vector (x,y) - the point to find a shortest path to

• Returns: A matrix representing the least-cost path. See find_lcp() for details on the
return matrix.

getSearchLimits • Description: Returns the x and y limits of the search area.
• Parameters: none
• Returns: four-element numeric vector, in this order: xmin, xmax, ymin, ymax

getStartPoint • Description: Returns the start point
• Parameters: none
• Returns: two-element numeric vector (x,y)

makeNetworkAll • Description: Calculates LCPs to all cells in the search area. This is used by
find_lcps when limit is NULL. See documentation of that function for more details.
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• Parameters: none
• Returns: void - no return value. Specific paths can be retrieved using getLcp, and
getAllPathsSummary can be used to summarize all paths that have been found.

makeNetworkCostDist • Description: Calculates all LCPs whose cost-distance is less than a
given threshold. This is used in find_lcps when limit is not NULL. See documentation
of that function for more details.

• Parameters:
– constraint: double; the maximum cost-distance allowed for a LCP

• Returns: void - no return value. Specific paths can be retrieved using getLcp, and
getAllPathsSummary can be used to summarize all paths that have been found.

CppNode-class CppNode: C++ quadtree node

Description

The CppNode C++ class defines objects that represent a single node of a quadtree. This is used
internally - end users should have no need to use any of the methods listed here.

Details

This class is defined in ’src/NodeWrapper.h’ and ’src/NodeWrapper.cpp’. When made available to
R, it is exposed as CppNode instead of NodeWrapper. NodeWrapper contains a pointer to a Node
object (defined in ’src/Node.h’ and ’src/Node.cpp’). All of the core functionality is in the Node class
- NodeWrapper is a wrapper class that adds the ’Rcpp’ code required for it to be accessible from R.

Fields

asVector • Description: Returns a vector giving info about the node
• Parameters: none
• Returns: a numeric vector with the following named elements:

– id

– hasChidren

– level

– xmin

– xmax

– ymin

– ymax

– smallestChildLength

as_data_frame makes use of this function to output info on each node - see the docu-
mentation of that function for details on what each column represents

getChildren • Description: Returns a list of the child nodes
• Parameters: none
• Returns: a list of CppNode objects
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getNeighborIds • Description: Returns the IDs of the neighboring cells

• Parameters: none

• Returns: a numeric vector containing the neighbor IDs

getNeighborInfo • Description: Returns a matrix with info on each of the neighboring cells

• Parameters: none

• Returns: a matrix. The getNeighborList() member function of CppQuadtree makes
use of this function - see documentation of that function for details on the return matrix.

getNeighborVals • Description: Returns the values of all neighboring cells

• Parameters: none

• Returns: a numeric vector

getNeighbors • Description: Returns a list of the neighboring nodes

• Parameters: none

• Returns: a list of CppNode objects

hasChildren • Description: Returns a boolean representing whether the node has children

• Parameters: none

• Returns: a boolean value - TRUE if it has children, FALSE otherwise

id • Description: Returns the ID of this node

• Parameters: none

• Returns: an integer

level • Description: Returns the ’level’ (i.e. depth in the tree) of this node

• Parameters: none

• Returns: an integer

smallestChildSideLength • Description: Returns the side length of the smallest descendant
node

• Parameters: none

• Returns: a double

value • Description: Returns the value of the node

• Parameters: none

• Returns: a double

xLims • Description: Returns the x boundaries of the node

• Parameters: none

• Returns: two-element numeric vector (xmin, xmax)

yLims • Description: Returns the y boundaries of the node

• Parameters: none

• Returns: two-element numeric vector (ymin, ymax)
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CppQuadtree-class CppQuadtree: C++ quadtree data structure

Description

The CppQuadtree class is the underlying C++ data structure used by the Quadtree S4 class. Note
that the average user should not need to use these functions - there are R wrapper functions that
provide access to the many of the member functions.

Details

This class is defined in ’src/QuadtreeWrapper.h’ and ’src/QuadtreeWrapper.cpp’. When made avail-
able to R, it is exposed as CppQuadtree rather than QuadtreeWrapper. QuadtreeWrapper contains
a pointer to a Quadtree C++ object (defined in ’src/Quadtree.h’ and ’src/Quadtree.cpp’). All of the
core functionality is in the Quadtree C++ class - QuadtreeWrapper is a wrapper class that adds the
’Rcpp’ code required for it to be accessible from R.

Fields

constructor • Description: Default constructor. Can be used as follows: qt <- new(CppQuadtree)

• Parameters: none
• Returns: an empty CppQuadtree object

constructor • Description: Constructor. Can be used as follows: qt <- new(CppQuadtree,
xlims, ylims, maxCellLength, minCellLength, splitAllNAs, splitAnyNAs). Used
in quadtree(). The parameters for this constructor correspond with the similarly named
parameters in quadtree() - see its documentation for more details on what the param-
eters signify. Note that the constructor does not "build" the quadtree structure - that is
done by createTree().

• Parameters:
– xlims: two-element numeric vector (xmin, xmax)
– ylims: two-element numeric vector (ymin, ymax)
– maxCellLength: two-element numeric vector - first element is for the x dimension,

second is for the y dimension
– minCellLength: two-element numeric vector - first element is for the x dimension,

second is for the y dimension
– splitAllNAs: boolean
– splitAnyNAs: boolean

readQuadtree • Description: Reads a quadtree from a file. Note that this is a static function,
so it does not require an instance of CppQuadtree to be called. read_quadtree() is a
wrapper for this function - see its documentation for more details.

• Parameters:
– filePath: string; the file to read from

• Returns: a CppQuadtree

asList • Description: Outputs a list containing details about each cell. as_data_frame() is a
wrapper for this function that rbinds the individual list elements into a data frame.
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• Parameters: none
• Returns: a list of named numeric vectors. Each numeric vector provides information

on a single cell. The elements returned are the same as the columns described in the
documentation for as_data_frame() - see that help page for details.

asVector • Description: Returns cell values as a vector. as_vector() is a wrapper for this
function.

• Parameters:
– terminalOnly: boolean; if TRUE, returns only the values of the terminal cells. If
FALSE, returns all cell values

• Returns: a numeric vector

copy • Description: Returns a deep copy of a quadtree. copy() is a wrapper for this function -
see the documentation for that function for more details.

• Parameters: none
• Returns: a CppQuadtree object

createTree • Description: Constructs a quadtree from a matrix. quadtree() is a wrapper for
this function and should be used to create quadtrees. The parameters correspond with the
similarly named parameters in quadtree() - see the documentation of that function for
details on the parameters.

• Parameters:
– mat: matrix; data to be used to create the quadtree
– splitMethod: string
– splitThreshold: double
– splitFun: function
– splitArgs: list
– combineFun: function
– combineArgs: list
– templateQuadtree: CppQuadtree object

• Returns: void - no return value

extent • Description: Returns the extent of the quadtree. This is equivalent to extent(qt,
original = FALSE)

• Parameters: none
• Returns: four-element numeric vector, in this order: xmin, xmax, ymin, ymax

getCell • Description: Given the x and y coordinates of a point, returns the cell at that point.
• Parameters:

– pt: two-element numeric vector (x,y)
• Returns: a CppNode object representing the cell that contains the point

getCells • Description: Given x and y coordinates of points, returns a list of the cells at those
points (as CppNode objects). It is the same as getCell, except that it allows users to get
multiple cells at once instead of one at a time.

• Parameters:
– x: numeric vector; the x coordinates
– y: numeric vector; the y coordinates; must be the same length as x
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• Returns: a list of CppNode objects corresponding to the x and y coordinates passed to the
function

getCellsDetails • Description: Given points defined by their x and y coordinates, returns a
matrix giving details on the cells at each of the points. extract(qt, extents = TRUE) is
a wrapper for this function.

• Parameters:
– x: numeric vector; the x coordinates
– y: numeric vector; the y coordinates; must be the same length as x

• Returns: A matrix with the cell details. See extract() for details about the matrix
columns

getLcpFinder • Description: Returns a CppLcpFinder object that can be used to find least-
cost paths on the quadtree. lcp_finder() is a wrapper for this function. For details on
the parameters see the documentation of the similarly named parameters in lcp_finder().

• Parameters:
– startPoint: two-element numeric vector
– xlim: two-element numeric vector
– ylim: two-element numeric vector
– searchByCentroid : boolean

• Returns: a CppLcpFinder object

getNeighborList • Description: Returns the neighbor relationships between all cells.
• Parameters: none
• Returns: a list of matrices. Each matrix corresponds to a single cell and has one line

for each neighboring cell. "neighbor" includes diagonal adjacency. Each matrix has the
following columns:

– id0, x0, y0, val0, hasChildren0: the ID, x and y coordinates of the centroid, cell
value, and whether the cell has children. This is for the cell of interest. Note that the
values of these columns will be same across all rows because they refer to the same
cell.

– id1, x1, y1, val1, hasChildren1: the ID, x and y coordinates of the centroid, cell
value, and whether the cell has children. This is for the neighbors of the cell of
interest. (i.e. the cell represented by the columns suffixed with ’0’).

getNeighbors • Description: Given a point, returns a matrix with info on the cells that neigh-
bor the cell that the point falls in. get_neighbors() is a wrapper for this function.

• Parameters:
– pt: two-element numeric vector (x,y)

• Returns: a six-column matrix with one row per neighboring cell. It has the following
columns:

– id

– xmin

– xmax

– ymin

– ymax

– value
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getValues • Description: Given points defined by their x and y coordinates, returns a numeric
vector of the values of the cells at each of the points. extract(qt, extents = FALSE) is
a wrapper for this function.

• Parameters:
– x: numeric vector; the x coordinates
– y: numeric vector; the y coordinates; must be the same length as x

• Returns: a numeric vector of cell values corresponding with the x and y coordinates
passed to the function

maxCellDims • Description: Returns the maximum allowable cell length used when construct-
ing the quadtree (i.e. the value passed to the max_cell_length parameter of quadtree()).
Note that this does not return the maximum cell size in the quadtree - it returns the maxi-
mum allowable cell size. Also note that if no value was provided for max_cell_length,
the max allowable cell length is set to the length and width of the total extent.

• Parameters: none
• Returns: A two-element numeric vector giving the maximum allowable side length for

the x and y dimensions.

minCellDims • Description: Returns the minimum allowable cell length used when construct-
ing the quadtree (i.e. the value passed to the min_cell_length parameter of quadtree()).
Note that this does not return the minimum cell size in the quadtree - it returns the mini-
mum allowable cell size. Also note that if no value was provided for min_cell_length,
the min allowable cell length is set to -1.

• Parameters: none
• Returns: A two-element numeric vector giving the minimum allowable side length for

the x and y dimensions.

nNodes • Description: Returns the total number of nodes in the quadtree. Note that this includes
all nodes, not just terminal nodes.

• Parameters: none
• Returns: integer

originalDim • Description: Returns the dimensions of the raster used to create the quadtree
before its dimensions were adjusted.

• Parameters: none
• Returns: two-element numeric vector that gives the number of cells along the x and y

dimensions.

originalExtent • Description: Returns the extent of the raster used to create the quadtree
before its dimensions/extent were adjusted. This is equivalent to extent(qt, original
= TRUE)

• Parameters: none
• Returns: four-element numeric vector, in this order: xmin, xmax, ymin, ymax

originalRes • Description: Returns the resolution of the raster used to create the quadtree
before its dimensions/extent were adjusted.

• Parameters: none
• Returns: two-element numeric vector (x cell length, y cell length)

print • Description: Returns a string that represents the quadtree.
• Parameters: none
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• Returns: a string

projection • Description: Returns the projection of the quadtree.
• Parameters: none
• Returns: a string

root • Description: Returns the root node of the quadtree.
• Parameters: none
• Returns: a CppNode object

setOriginalValues • Description: Sets the properties that record the extent and dimensions
of the original raster used to create the quadtree

• Parameters:
– xmin: double
– xmax: double
– ymin: double
– ymax: double
– nX: integer - number of cells along the x dimension
– nY: integer - number of cells along the y dimension

• Returns: void - no return value

setProjection • Description: Sets the the projection of the quadtree.
• Parameters:

– projection: string
• Returns: void - no return value

setValues • Description: Given points defined by their x and y coordinates and a vector of
values, sets the values of the quadtree cells at each of the points. set_values() is a
wrapper for this function - see its documentation page for more details.

• Parameters:
– x: numeric vector; the x coordinates
– y: numeric vector; the y coordinates; must be the same length as x
– newVals: numeric vector; must be the same length as x and y

• Returns: void - no return value

transformValues • Description: Uses a function to transform the values of all cells. transform_values()
is a wrapper for this function - see its documentation page for more details.

• Parameters:
– trasform_fun: function

• Returns: void - no return value

writeQuadtree • Description: Writes a quadtree to a file. write_quadtree() is a wrapper for
this function - see its documentation page for more details.

• Parameters:
– filePath: string; the file to save the quadtree to

• Returns: void - no return value
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extent Get the extent of a Quadtree

Description

Gets the extent of the Quadtree as an Extent object (from the raster package).

Usage

## S4 method for signature 'Quadtree'
extent(x, original = FALSE)

Arguments

x a Quadtree

original boolean; if FALSE (the default), it returns the total extent covered by the quadtree.
If TRUE, the function returns the extent of the original raster used to create the
quadtree, before the dimensions were adjusted by padding with NAs and/or the
raster was resampled.

Value

an Extent object

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create a quadtree
qt <- quadtree(habitat, split_threshold = .1, adj_type = "expand")

# retrieve the extent and the original extent
ext <- extent(qt)
ext_orig <- extent(qt, original = TRUE)

ext
ext_orig

# plot them
plot(qt)
rect(ext[1], ext[3], ext[2], ext[4], border = "blue", lwd = 4)
rect(ext_orig[1], ext_orig[3], ext_orig[2], ext_orig[4],

border = "red", lwd = 4)
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extract Extract Quadtree values

Description

Extracts the cell values and optionally the cell extents at the given points.

Usage

## S4 method for signature 'Quadtree,ANY'
extract(x, y, extents = FALSE)

Arguments

x a Quadtree

y a two-column matrix representing point coordinates. First column contains the
x-coordinates, second column contains the y-coordinates

extents boolean; if FALSE (the default), a vector containing cell values is returned. If
TRUE, a matrix is returned providing each cell’s extent in addition to its value

Value

If extents = FALSE, returns a numeric vector corresponding to the values at the points represented
by pts.

If extents = TRUE, returns a six-column numeric matrix providing the extent of each cell along
with the cell’s value and ID. The six columns are, in this order: id, xmin, xmax, ymin, ymax, value.

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create quadtree
qt1 <- quadtree(habitat, split_threshold = .1, adj_type = "expand")
plot(qt1)

# create points at which we'll extract values
coords <- seq(-1000, 40010, length.out = 10)
pts <- cbind(coords,coords)

# extract the cell values
vals <- extract(qt1, pts)

# plot the quadtree and the points
plot(qt1, border_col = "gray50", border_lwd = .4)
points(pts, pch = 16, cex = .6)
text(pts, labels = round(vals, 2), pos = 4)
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# we can also extract the cell extents in addition to the values
extract(qt1, pts, extents = TRUE)

find_lcp Find the LCP between two points on a Quadtree

Description

Finds the least-cost path (LCP) from the start point (the point used to create the LcpFinder) to
another point, using a Quadtree as a resistance surface.

Usage

## S4 method for signature 'Quadtree'
find_lcp(
x,
start_point,
end_point,
use_orig_points = TRUE,
xlim = NULL,
ylim = NULL,
search_by_centroid = FALSE

)

## S4 method for signature 'LcpFinder'
find_lcp(x, end_point, allow_same_cell_path = FALSE)

Arguments

x a LcpFinder or a Quadtree

start_point two-element numeric vector; the x and y coordinates of the starting point. Not
used if x is a LcpFinder since the start point is determined when the LcpFinder
is created (using lcp_finder()).

end_point two-element numeric vector; the x and y coordinates of the destination point
use_orig_points

boolean; if TRUE (the default), the path is calculated between start_point and
end_point. If FALSE, the path is calculated between the centroids of the cells
the points fall in.

xlim two-element numeric vector (xmin, xmax); passed to lcp_finder(); constrains
the nodes included in the network to those whose x limits fall in the range spec-
ified in xlim. If NULL the x limits of x are used

ylim same as xlim, but for y
search_by_centroid

boolean; passed to lcp_finder(); determines which cells are considered to be
"in" the box specified by xlim and ylim. If FALSE (the default) any cell that
overlaps with the box is included. If TRUE, a cell is only included if its centroid
falls inside the box.
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allow_same_cell_path

boolean; default is FALSE; if TRUE, allows paths to be found between two
points that fall in the same cell. See ’Details’ for more.

Details

See the vignette ’quadtree-lcp’ for more details and examples (i.e. run vignette("quadtree-lcp",
package = "quadtree"))

Using find_lcp(<Quadtree>) rather than find_lcp(<LcpFinder>) is simply a matter of con-
venience - when a Quadtree is passed to find_lcp(), it automatically creates an LcpFinder
and then uses find_lcp(<LcpFinder>) to get the path between the two points. This is con-
venient if you only want a single LCP. However, if you want to find multiple LCPs from a sin-
gle start point, it is better to first create the LcpFinder object using lcp_finder() and then use
find_lcp(<LcpFinder>) for finding LCPs. This is because an LcpFinder object saves state, so
subsequent calls to find_lcp(<LcpFinder>) will run faster.

By default, if the end point falls in the same cell as the start point, the path will consist only of the
point associated with the cell. When using find_lcp with a LcpFinder, setting allow_same_cell_path
to TRUE allows for paths to be found within a single cell. In this case, if the start and end points fall in
the same cell, the path will consist of two points - the point associated with the cell and end_point.
If using find_lcp with a Quadtree, this will automatically be allowed if use_orig_points is
TRUE.

Value

Returns a five column matrix representing the LCP. It has the following columns:

• x: x coordinate of this point (centroid of the cell)

• y: y coordinate of this point (centroid of the cell)

• cost_tot: the cumulative cost up to this point

• dist_tot: the cumulative distance up to this point - note that this is not straight-line distance,
but instead the distance along the path

• cost_cell: the cost of the cell that contains this point

• id: the ID of the cell that contains this point

If no path is possible between the two points, a zero-row matrix with the previously described
columns is returned.

See Also

lcp_finder() creates the LCP finder object used as input to this function. find_lcps() calculates
all LCPs whose cost-distance is less than some value. summarize_lcps() outputs a summary
matrix of all LCPs that have been calculated so far.

Examples

####### NOTE #######
# see the "quadtree-lcp" vignette for more details and examples:
# vignette("quadtree-lcp", package = "quadtree")
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####################

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create a quadtree
qt <- quadtree(habitat, split_threshold = .1, adj_type = "expand")
plot(qt, crop = TRUE, na_col = NULL, border_lwd = .4)

# define our start and end points
start_pt <- c(6989, 34007)
end_pt <- c(33015, 38162)

# create the LCP finder object and find the LCP
lcpf <- lcp_finder(qt, start_pt)
path <- find_lcp(lcpf, end_pt)

# plot the LCP
plot(qt, crop = TRUE, na_col = NULL, border_col = "gray30", border_lwd = .4)
points(rbind(start_pt, end_pt), pch = 16, col = "red")
lines(path[, 1:2], col = "black")

# note that the above path can also be found as follows:
path <- find_lcp(qt, start_pt, end_pt)

find_lcps Find LCPs to surrounding points

Description

Calculates least-cost paths (LCPs) from the start point (the point used to create the LcpFinder) to
surrounding points. A constraint can be placed on the LCPs so that only LCPs that are less than
some specified cost-distance are returned.

Usage

## S4 method for signature 'LcpFinder'
find_lcps(x, limit = NULL, return_summary = TRUE)

Arguments

x a LcpFinder

limit numeric; the maximum cost-distance for the LCPs. If NULL (the default), no
limit is applied and all possible LCPs (within the LcpFinder’s search area) are
found

return_summary boolean; if TRUE (the default), summarize_lcps() is used to return a summary
matrix of all paths found. If FALSE, no value is returned.
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Details

Once the LCPs have been calculated, find_lcp() can be used to extract paths to individual points.
No further calculation will be required to retrieve these paths so long as they were calculated when
find_lcps() was run.

A very important note to make is that once the LCP tree is calculated, it never gets smaller. For
example, we could use find_lcps() with limit = NULL to calculate all LCPs. If we then used
find_lcps() on the same LcpFinder but this time used a limit, it would still return all of the
LCPs, even those that are greater than the specified limit, since the tree never shrinks.

Value

If return_summary is TRUE, summarize_lcps() is used to return a matrix summarizing each LCP
found. See the help page of that function for details on the return matrix. If return_summary is
FALSE, no value is returned.

See Also

lcp_finder() creates the LcpFinder object used as input to this function. find_lcp() returns the
LCP between the start point and another point. summarize_lcps() outputs a summary matrix of
all LCPs that have been calculated so far.

Examples

####### NOTE #######
# see the "quadtree-lcp" vignette for more details and examples:
# vignette("quadtree-lcp", package = "quadtree")
####################

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, split_threshold = .1, adj_type = "expand")

start_pt <- c(19000, 25000)

# finds LCPs to all cells
lcpf1 <- lcp_finder(qt, start_pt)
paths1 <- find_lcps(lcpf1, limit = NULL)

# limit LCPs by cost-distance
lcpf2 <- lcp_finder(qt, start_pt)
paths2 <- find_lcps(lcpf2, limit = 5000)

# Now plot the reachable cells
plot(qt, crop = TRUE, na_col = NULL, border_lwd = .3)
points(lcpf1, col = "black", pch = 16, cex = 1)
points(lcpf2, col = "red", pch = 16, cex = .7)
points(start_pt[1], start_pt[2], bg = "skyblue", col = "black", pch = 24,

cex = 1.5)
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get_neighbors Get the neighbors of a Quadtree cell

Description

Returns a matrix with information about the neighbors of a quadtree cell.

Usage

## S4 method for signature 'Quadtree,numeric'
get_neighbors(x, y)

Arguments

x Quadtree

y two-element numeric vector; the x and y coordinates of a point - this is used to
identify which quadtree cell to find neighbors for.

Value

A six-column matrix with one row per neighboring cell. It has the following columns:

• id: the ID of the cell

• xmin, xmax, ymin, ymax: the x and y limits of the cell

• value: the value of the cell

Note that this return matrix only includes terminal nodes/cells - that is, cells that have no children.
Also note that cells that are diagonal from each other are considered to be neighbors.

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create a quadtree
qt <- quadtree(habitat, split_threshold = .1, adj_type = "expand")

# get the cell's neighbors
pt <- c(27000, 10000)
nbs <- get_neighbors(qt, pt)

# plot the neighbors
plot(qt, border_lwd = .3)
points(pt[1], pt[2], col = "black", bg = "lightblue", pch = 21)
with(data.frame(nbs),

rect(xmin, ymin, xmax, ymax, col = "red", border = "black", lwd = 2))
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LcpFinder-class LcpFinder Class

Description

This S4 class is a wrapper around a CppLcpFinder C++ object that is made available to R via
the ’Rcpp’ package. Instances of this class can be created from a Quadtree object using the
lcp_finder function.

The methods of the C++ object (CppLcpFinder) can be accessed from R, but the typical end-user
should have no need of these methods - they are meant for internal use. That being said, descriptions
of the available methods can be found on the CppLcpFinder documentation page.

Details

Functions for creating a LcpFinder object:

• lcp_finder()

Methods:

• find_lcp()

• find_lcps()

• plot()

• show()

• summarize_lcps()

• summary()

Slots

ptr a C++ object of class CppLcpFinder

lcp_finder Create a LcpFinder

Description

Creates a LcpFinder object that can then be used by find_lcp and find_lcps to find least-cost
paths (LCPs) using a Quadtree as a resistance surface.
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Usage

## S4 method for signature 'Quadtree'
lcp_finder(
x,
start_point,
xlim = NULL,
ylim = NULL,
new_points = matrix(nrow = 0, ncol = 2),
search_by_centroid = FALSE

)

Arguments

x a Quadtree to be used as a resistance surface

start_point two-element numeric vector (x, y) - the x and y coordinates of the starting point

xlim two-element numeric vector (xmin, xmax) - constrains the nodes included in the
network to those whose x limits fall in the range specified in xlim. If NULL the
x limits of x are used

ylim same as xlim, but for y

new_points a two-column matrix representing point coordinates. First column contains the
x-coordinates, second column contains the y-coordinates. This matrix specifies
point locations to use instead of the node centroids. See ’Details’ for more.

search_by_centroid

boolean; determines which cells are considered to be "in" the box specified by
xlim and ylim. If FALSE (the default) any cell that overlaps with the box is
included. If TRUE, a cell is only included if its centroid falls inside the box.

Details

See the vignette ’quadtree-lcp’ for more details and examples (i.e. run vignette("quadtree-lcp",
package = "quadtree"))

To find a least-cost path, the cells are treated as points - by default, the cell centroids are used.
This results in some degree of error, especially for large cells. The new_points parameter can be
used to specify the points used to represent the cells - this is particularly useful for specifying the
points to be used for the start and end cells. Each point in the matrix will be used as the point for
the cell it falls in (if two points fall in the same cell, the first point is used). Note that this raises
the possibility that a straight line between neighboring cells may pass through other cells as well,
which complicates the calculation of the edge cost. To mitigate this, when a straight line between
neighboring cells passes through a different cell, the path is adjusted so that it actually consists of
two segments - the start point to the "corner point" where the two cells meet, and then from that
point to the end point. See the "quadtree-lcp" vignette for a graphical example of this situation.

An LcpFinder saves state, so once the LCP tree is calculated, individual LCPs can be retrieved
without further computation. This makes it efficient at calculating multiple LCPs from a single
starting point. However, in the case where only a single LCP is needed, find_lcp() offers an
interface for finding an LCP without needing to use lcp_finder() to create the LcpFinder object
first.
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Value

a LcpFinder

See Also

find_lcp() returns the LCP between the start point and another point. find_lcps() finds all LCPs
whose cost-distance is less than some value. summarize_lcps() outputs a summary matrix of all
LCPs that have been calculated so far. points() and lines() can be used to plot a LcpFinder.

Examples

####### NOTE #######
# see the "quadtree-lcp" vignette for more details and examples:
# vignette("quadtree-lcp", package = "quadtree")
####################

library(quadtree)

habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))
qt <- quadtree(habitat, split_threshold = .1, adj_type = "expand")

# find the LCP between two points
start_pt <- c(6989, 34007)
end_pt <- c(33015, 38162)

# create the LCP finder object and find the LCP
lcpf <- lcp_finder(qt, start_pt)
path <- find_lcp(lcpf, end_pt)

# plot the LCP
plot(qt, crop = TRUE, na_col = NULL, border_lwd = .3)
points(rbind(start_pt, end_pt), pch = 16, col = "red")
lines(path[, 1:2], col = "black")

n_cells Get the number of cells in a Quadtree

Description

Returns the number of nodes/cells in the quadtree.

Usage

## S4 method for signature 'Quadtree'
n_cells(x, terminal_only = TRUE)
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Arguments

x a Quadtree

terminal_only boolean; if TRUE (the default) only the terminal nodes are counted. If FALSE, all
nodes are counted, thereby giving the total number of nodes in the tree.

Value

a numeric

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .1)
n_cells(qt)
n_cells(qt, terminal_only = FALSE)

plot Plot a Quadtree

Description

Plots a Quadtree.

Usage

## S4 method for signature 'Quadtree,missing'
plot(
x,
add = FALSE,
col = NULL,
alpha = NULL,
nb_line_col = NULL,
border_col = "black",
border_lwd = 0.4,
xlim = NULL,
ylim = NULL,
zlim = NULL,
crop = FALSE,
na_col = "white",
adj_mar_auto = 6,
legend = TRUE,
legend_args = list(),
...

)
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Arguments

x a Quadtree

add boolean; if FALSE (the default) a new plot is created. If TRUE, the plot is added
to the existing plot.

col character vector; the colors that will be used to create the color ramp used in the
plot. If no argument is provided, terrain.colors(100, rev = TRUE) is used.

alpha numeric; transparency of the cell colors. Must be in the range 0-1, where 0 is
fully transparent and 1 is fully opaque. If NULL (the default) it sets alpha to 1.

nb_line_col character; the color of the lines drawn between neighboring cells. If NULL (the
default), these lines are not plotted.

border_col character; the color to use for the cell borders. Use "transparent" if you don’t
want borders to be shown. Default is "black".

border_lwd numeric; the line width of the cell borders. Default is .4.

xlim two-element numeric vector; defines the minimum and maximum values of the
x axis. Note that this overrides the crop parameter.

ylim two-element numeric vector; defines the minimum and maximum values of the
y axis. Note that this overrides the crop parameter.

zlim two-element numeric vector; defines how the colors are assigned to the cell
values. The first color in col will correspond to zlim[1] and the last color in
col will correspond to zlim[2]. If zlim does not encompass the entire range
of cell values, cells that have values outside of the range specified by zlim will
be treated as NA cells. If this value is NULL (the default), it uses the min and max
cell values.

crop boolean; if TRUE, only displays the extent of the original raster, thus ignoring
any of the NA cells that were added to pad the raster before making the quadtree.
Ignored if either xlim or ylim are non-NULL.

na_col character; the color to use for NA cells. If NULL, NA cells are not plotted. Default
is "white".

adj_mar_auto numeric; checks the size of the right margin (par("mar")[4]) - if it is less than
the provided value and legend is TRUE, then it sets it to be the provided value
in order to make room for the legend (after plotting, it resets it to its original
value). If NULL, the margin is not adjusted. Default is 6.

legend boolean; if TRUE (the default) a legend is plotted in the right margin.

legend_args named list; contains arguments that are sent to the add_legend() function. See
the help page for add_legend() for the parameters. Note that zlim, cols, and
alpha are supplied automatically, so if the list contains elements named zlim,
cols, or alpha the user-provided values will be ignored.

... arguments passed to the default plot() function

Details

See ’Examples’ for demonstrations of how the various options can be used.
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Value

no return value

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create quadtree
qt <- quadtree(habitat, split_threshold = .1, adj_type = "expand")

#####################################
# DEFAULT
#####################################

# default - no additional parameters provided
plot(qt)

#####################################
# CHANGE PLOT EXTENT
#####################################

# note that additional parameters like 'main', 'xlab', 'ylab', etc. will be
# passed to the default 'plot()' function

# crop extent to the original extent of the raster
plot(qt, crop = TRUE, main = "cropped")

# crop and don't plot NA cells
plot(qt, crop = TRUE, na_col = NULL, main = "cropped")

# use 'xlim' and 'ylim' to zoom in on an area
plot(qt, xlim = c(10000, 20000), ylim = c(20000, 30000), main = "zoomed in")

#####################################
# COLORS AND BORDERS
#####################################

# change border color and width
plot(qt, border_col = "transparent") # no borders
plot(qt, border_col = "gray60") # gray borders
plot(qt, border_lwd = .3) # change line thickness of borders

# change color palette
plot(qt, col = c("blue", "yellow", "red"))
plot(qt, col = hcl.colors(100))
plot(qt, col = c("black", "white"))

# change color transparency
plot(qt, alpha = .5)
plot(qt, col = c("blue", "yellow", "red"), alpha = .5)
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# change color of NA cells
plot(qt, na_col = "lavender")

# don't plot NA cells at all
plot(qt, na_col = NULL)

# change 'zlim'
plot(qt, zlim = c(0, 5))
plot(qt, zlim = c(.2, .7))

#####################################
# SHOW NEIGHBOR CONNECTIONS
#####################################

# plot all neighbor connections
plot(qt, nb_line_col = "black", border_col = "gray60")

# don't plot connections to NA cells
plot(qt, nb_line_col = "black", border_col = "gray60", na_col = NULL)

#####################################
# LEGEND
#####################################

# no legend
plot(qt, legend = FALSE)

# increase right margin size
plot(qt, adj_mar_auto = 10)

# use 'legend_args' to customize the legend
plot(qt, adj_mar_auto = 10,

legend_args = list(lgd_ht_pct = .8, bar_wd_pct = .4))

plot.LcpFinder Plot a LcpFinder object

Description

Plots a LcpFinder object.

Usage

## S4 method for signature 'LcpFinder'
points(x, add = TRUE, ...)

## S4 method for signature 'LcpFinder'
lines(x, add = TRUE, ...)
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Arguments

x a LcpFinder

add boolean; if TRUE (the default), the plot is added to the existing plot. If FALSE, a
new plot is created.

... arguments passed to the default plotting functions

Details

points() plots points at the centroids of the cells to which a path has been found. lines() plots
all of the LCPs found so far by the LcpFinder object.

Value

no return value

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .1)

start_point <- c(6989, 34007)
end_point <- c(12558, 27602)
lcpf <- lcp_finder(qt, start_point)
lcp <- find_lcp(lcpf, end_point)

plot(qt, crop = TRUE, border_lwd = .3, na_col = NULL)
points(lcpf, col = "red", pch = 16, cex = .4)
lines(lcpf)

projection Retrieve the projection of a Quadtree

Description

Retrieves the projection of a Quadtree.

Usage

## S4 method for signature 'Quadtree'
projection(x)

## S4 replacement method for signature 'Quadtree'
projection(x) <- value
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Arguments

x a Quadtree

value character; the projection to assign to the Quadtree

Value

a string

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .1)
quadtree::projection(qt) <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"
quadtree::projection(qt)

quadtree Create a Quadtree from a raster or matrix

Description

Creates a Quadtree from a SpatRaster, RasterLayer or a matrix.

Usage

## S4 method for signature 'ANY'
quadtree(
x,
split_threshold = NULL,
split_method = "range",
split_fun = NULL,
split_args = list(),
split_if_any_na = TRUE,
split_if_all_na = FALSE,
combine_method = "mean",
combine_fun = NULL,
combine_args = list(),
max_cell_length = NULL,
min_cell_length = NULL,
adj_type = "expand",
resample_n_side = NULL,
resample_pad_nas = TRUE,
extent = NULL,
projection = "",
proj4string = NULL,
template_quadtree = NULL

)
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Arguments

x a RasterLayer, SpatRaster, or matrix. If x is a matrix, the extent and
projection parameters can be used to set the extent and projection of the
quadtree. If x is a RasterLayer or SpatRaster, the extent and projection are
derived from the raster.

split_threshold

numeric; the threshold value used by the split method (specified by split_method)
to decide whether to split a quadrant. If the value for a quadrant is greater than
this value, it is split into its four child cells. If split_method is "custom", this
parameter is ignored.

split_method character; one of "range" (the default), "sd" (standard deviation), "cv" (coef-
ficient of variation) or "custom". Determines the method used for calculating
the value used to determine whether or not to split a quadrant (this calculated
value is compared with split_threshold to decide whether to split a cell). If
"custom", a function must be supplied to split_fun. See ’Details’ for more.

split_fun function; function used on each quadrant to decide whether or not to split the
quadrant. Only used when split_method is "custom". Must take two argu-
ments, vals (a numeric vector of the cell values in a quadrant) and args (a
named list of arguments used within the function), and must output TRUE if the
quadrant is to be split and FALSE otherwise. It must be able to handle NA values
- if NA is ever returned, an error will occur.

split_args list; named list that contains the arguments needed by split_fun. This list is
given to the args parameter of split_fun.

split_if_any_na

boolean; if TRUE (the default), a quadrant is automatically split if any of the
values within the quadrant are NA.

split_if_all_na

boolean; if FALSE (the default), a quadrant that contains only NA values is not
split. If TRUE, quadrants that contain all NA values are split to the smallest possi-
ble cell size.

combine_method character; one of "mean", "median", "min", "max", or "custom". Determines
the method used for aggregating the values of multiple cells into a single value
for a larger, aggregated cell. Default is "mean". If "custom", a function must
be supplied to combine_fun.

combine_fun function; function used to calculate the value of a quadrant. Only used when
combine_method is "custom". Must take two arguments, vals (a numeric vec-
tor of the cell values in a quadrant) and args (a named list of arguments used
within the function), and must output a single numeric value, which will be used
as the cell value.

combine_args list; named list that contains the arguments needed by combine_fun. This list is
given to the args parameter of combine_fun.

max_cell_length

numeric; the maximum side length allowed for a quadtree cell. Any quadrants
larger than max_cell_length will automatically be split. If NULL (the default)
no restrictions are placed on the maximum cell length.
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min_cell_length

numeric; the minimum side length allowed for a quadtree cell. A quadrant will
not be split if its children would be smaller than min_cell_length. If NULL (the
default) no restrictions are placed on the minimum cell length.

adj_type character; one of "expand" (the default), "resample", or "none". Specifies the
method used to adjust x so that its dimensions are suitable for quadtree creation
(i.e. square and with the number of cells in each direction being a power of 2).
See ’Details’ for more on the two methods of adjustment.

resample_n_side

integer; if adj_type is 'resample', this number is used to determine the di-
mensions to resample the raster to.

resample_pad_nas

boolean; only applicable if adj_type is 'resample'. If TRUE (the default), NAs
are added to the shorter side of the raster to make it square before resampling.
This ensures that the cells of the resulting quadtree will be square. If FALSE, no
NAs are added - the cells in the quadtree will not be square.

extent Extent object or else a four-element numeric vector describing the extent of the
data (in this order: xmin, xmax, ymin, ymax). Only used when x is a matrix -
this parameter is ignored if x is a raster since the extent is derived directly from
the raster. If no value is provided and x is a matrix, the extent is assumed to be
c(0,ncol(x),0,nrow(x)).

projection character; string describing the projection of the data. Only used when x is a
matrix - this parameter is ignored if x is a raster since the proj4ection of the raster
is automatically used. If no value is provided and x is a matrix, the projection of
the quadtree is set to NA.

proj4string deprecated. Use projection instead.
template_quadtree

Quadtree; if provided, the new quadtree will be created so that it has the exact
same structure as the template quadtree. Thus, no split function is used because
the decision about whether to split is pre-determined by the template quadtree.
The raster used to create the template quadtree should have the exact same ex-
tent and dimensions as x. If template_quadtree is non-NULL, all split_*
parameters are disregarded, as are max_cell_length and min_cell_length.

Details

The ’quadtree-creation’ vignette contains detailed explanations and examples for all of the various
creation options - run vignette("quadtree-creation", package = "quadtree") to view the vi-
gnette.

If adj_type is "expand", NA cells are added to the raster in order to create an expanded raster
whose dimensions are a power of two. The smallest number that is a power of two but greater than
the larger dimension is used as the dimensions of the expanded raster. If adj_type is "resample",
the raster is resampled to a raster with resample_n_side rows and columns. If resample_pad_nas
is TRUE, NA rows or columns are are added to the shorter dimension before resampling to make the
raster square. This ensures that the quadtree cells will be square (assuming the original raster cells
were square).
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When split_method is "range", the difference between the maximum and minimum cell values
in a quadrant is calculated - if this value is greater than split_threshold, the quadrant is split.
When split_method is "sd", the standard deviation of the cell values in a quadrant is calculated -
if this value is greater than split_threshold, the quadrant is split.

Value

a Quadtree

Examples

####### NOTE #######
# see the "quadtree-creation" vignette for more details and examples of all
# the different parameter options:
# vignette("quadtree-creation", package = "quadtree")
####################

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .15)
plot(qt)
# we can make it look nicer by customizing the plotting parameters
plot(qt, crop = TRUE, na_col = NULL, border_lwd = .3)

# try a different splitting method
qt <- quadtree(habitat, .05, "sd")
plot(qt)

# ---- using a custom split function ----

# split a cell if any of the values are below a given value
split_fun = function(vals, args) {

if (any(is.na(vals))) { # check for NAs first
return(TRUE) # if there are any NAs we'll split automatically

} else {
return(any(vals < args$threshold))

}
}

qt <- quadtree(habitat, split_method = "custom", split_fun = split_fun,
split_args = list(threshold = .8))

plot(qt)

Quadtree-class Quadtree class
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Description

This S4 class is essentially a wrapper around a CppQuadtree C++ object. Quadtree has one slot,
which is named ptr and contains a CppQuadtree object. Instances of this class can be created
through the quadtree() function.

An important note to make is that functions that modify a Quadtree modify the existing object. For
example, running transform_values(qt, function(x) x+1) modifies qt. This differs from the
way R objects usually function - most functions that modify R objects return a modified copy of
the object, thus preserving the original object. Note that the copy() function, which makes a deep
copy of a Quadtree, can be used to preserve a copy of a Quadtree before modifying it.

The methods of the C++ object (CppQuadtree) stored in the ptr slot can be accessed from R, but
the typical end-user should have no need of these methods - they are meant for internal use. That
being said, descriptions of the available methods can be found on the CppQuadtree documentation
page.

Details

Functions for creating a Quadtree object:

• quadtree()

• read_quadtree()

Methods:

• as_data_frame()

• as_raster()

• as_vector()

• copy()

• extent()

• extract()

• get_neighbors()

• lcp_finder()

• n_cells()

• projection()

• plot()

• set_values()

• show()

• summary()

• transform_values()

• write_quadtree()

Slots

ptr a C++ object of class CppQuadtree
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read_quadtree Read/write a Quadtree

Description

Reads and writes a Quadtree.

Usage

## S4 method for signature 'character'
read_quadtree(x)

## S4 method for signature 'character,Quadtree'
write_quadtree(x, y)

Arguments

x character; the filepath to read from or write to

y a Quadtree

Details

To read/write a quadtree object, the C++ library cereal is used to serialize the quadtree and save
it to a file. The file extension is unimportant - it can be anything (I’ve been using the extension
’.qtree’).

Value

read_quadtree() - returns a Quadtree

write_quadtree() - no return value

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .1)

path <- tempfile(fileext = "qtree")
write_quadtree(path, qt)
qt2 <- read_quadtree(path)
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set_values Change values of Quadtree cells

Description

Given a Quadtree, a set of points, and a vector of new values, changes the value of the quadtree
cells containing the points to the corresponding value.

Usage

## S4 method for signature 'Quadtree,ANY,numeric'
set_values(x, y, z)

Arguments

x A Quadtree

y A two-column matrix representing point coordinates. First column contains the
x-coordinates, second column contains the y-coordinates.

z A numeric vector the same length as the number of rows of y. The values of the
cells containing y will be changed to the corresponding value in z.

Details

Note that it is entirely possible for y to contain multiple points that all fall within the same cell. The
values are changed in the order given, so the cell will take on the last value given for that cell.

It’s important to note that this modifies the original quadtree. If you wish to maintain a version of
the original quadtree, use copy beforehand to make a copy of the quadtree.

Value

no return value

See Also

transform_values() can be used to transform the existing values of all cells using a function.

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create a quadtree
qt <- quadtree(habitat, split_threshold = .1)

# generate some random points, then change the values at those points
ext <- extent(qt)
pts <- cbind(runif(100, ext[1], ext[2]), runif(100, ext[3], ext[4]))
set_values(qt, pts, rep(10, 100))
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# plot it out to see what happened
old_par <- par(mfrow = c(1, 2))
plot(qt, main = "original")
plot(qt, main = "after modification")
par(old_par)

summarize_lcps Get a matrix summarizing all LCPs found by a LcpFinder

Description

Given a LcpFinder, returns a matrix that summarizes all of the LCPs that have been calculated by
the LcpFinder.

Usage

## S4 method for signature 'LcpFinder'
summarize_lcps(x)

Arguments

x a LcpFinder

Details

Note that this function returns all of the paths that have been calculated. Finding one LCP likely
involves finding other LCPs as well. Thus, even if the LcpFinder has been used to find one LCP,
others have most likely been calculated. This function returns all of the LCPs that have been calcu-
lated so far.

Value

Returns a nine-column matrix with one row for each LCP (and therefore one row per destination
cell). The columns are as follows:

• id: the ID of the destination cell

• xmin, xmax, ymin, ymax: the extent of the destination cell

• value: the value of the destination cell

• area: the area of the destination cell

• lcp_cost: the cumulative cost of the LCP to this cell

• lcp_dist: the cumulative distance of the LCP to this cell - note that this is not straight-line
distance, but instead the distance along the path
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See Also

lcp_finder() creates the LcpFinder object used as input to this function. find_lcp() returns
the LCP between the start point and another point. find_lcps() calculates all LCPs whose cost-
distance is less than some value.

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, split_threshold = .1, adj_type = "expand")

start_pt <- c(19000, 25000)
end_pt <- c(33015, 38162)

# find LCP from 'start_pt' to 'end_pt'
lcpf <- lcp_finder(qt, start_pt)
lcp <- find_lcp(lcpf, end_pt)

# retrieve ALL the paths that have been calculated
paths <- summarize_lcps(lcpf)
head(paths)

summary.LcpFinder Show a summary of a LcpFinder

Description

Prints out information about the LcpFinder. Information shown is:

• class of object

• start point

• search limits

• number of paths found

Usage

## S4 method for signature 'LcpFinder'
summary(object)

## S4 method for signature 'LcpFinder'
show(object)

Arguments

object a LcpFinder
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Value

no return value

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .1)

start_point <- c(6989, 34007)
end_point <- c(33015, 38162)

lcpf <- lcp_finder(qt, start_point)
lcp <- find_lcp(lcpf, end_point)

summary(lcpf)

summary.Quadtree Show a summary of a Quadtree

Description

Prints out information about a Quadtree. Information shown is:

• class of object

• number of cells

• minimum cell size

• extent

• projection

• minimum and maximum values

Usage

## S4 method for signature 'Quadtree'
summary(object)

## S4 method for signature 'Quadtree'
show(object)

Arguments

object a Quadtree object

Value

no return value
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Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .1)
summary(qt)

transform_values Transform the values of all Quadtree cells

Description

Uses a function to change all cell values of a Quadtree.

Usage

## S4 method for signature 'Quadtree,`function`'
transform_values(x, y)

Arguments

x A Quadtree

y function; function used on each cell to transform the value. Must accept a single
numeric value and return a single numeric value. The function must also be able
to handle NA values.

Details

This function applies a function to every single cell, which allows the user to do things like multiply
by a scalar, invert the values, etc.

Since a quadtree may contain NA values, y must be able to handle NAs without throwing an error. For
example, if y contains some control statement such as if(x < .7), the function must have a separate
statement before this to catch NA values, since having an NA in an if statement is not allowed. See
’Examples’ for an example of this.

It’s important to note that this modifies the original quadtree. If you wish to maintain a version of
the original quadtree, use copy beforehand to make a copy of the quadtree (see ’Examples’).

Value

no return value

See Also

set_values() can be used to set the values of cells to specified values (rather than transforming
the existing values).
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Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

# create a quadtree
qt1 <- quadtree(habitat, split_threshold = .1)

# copy the quadtree so that we have a copy of the original (since using
#'transform_values' modifies the quadtree object)
qt2 <- copy(qt1)
qt3 <- copy(qt1)
qt4 <- copy(qt1)

transform_values(qt2, function(x) 1 - x)
transform_values(qt3, function(x) x^3)
transform_values(qt4, function(x) {

if (is.na(x)) return(NA) # make sure to handle NA's
if (x < .7) return(0)
return(1)

})

old_par <- par(mfrow = c(2, 2))
plot(qt1, main = "original", crop = TRUE, na_col = NULL,

border_lwd = .3, zlim = c(0, 1))
plot(qt2, main = "1 - value", crop = TRUE, na_col = NULL,

border_lwd = .3, zlim = c(0, 1))
plot(qt3, main = "values cubed", crop = TRUE, na_col = NULL,

border_lwd = .3, zlim = c(0, 1))
plot(qt4, main = "values converted to 0/1", crop = TRUE, na_col = NULL,

border_lwd = .3, zlim = c(0, 1))
par(old_par)

write_quadtree_ptr Read/write a Quadtree

Description

This is for debugging only, and users should never need to use this function - use write_quadtree()
instead. write_quadtree() serializes the CppQuadtree object (note that the underlying C++ ob-
ject is actually called QuadtreeWrapper, but it is exposed to R as CppQuadtree) stored in the ptr
slot of Quadtree.

This function, however, serializes only the Quadtree object contained by the QuadtreeWrapper.

Usage

## S4 method for signature 'character,Quadtree'
write_quadtree_ptr(x, y)
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Arguments

x character; the filepath to read from or write to

y a Quadtree

Value

no return value

Examples

library(quadtree)
habitat <- terra::rast(system.file("extdata", "habitat.tif", package="quadtree"))

qt <- quadtree(habitat, .1)

path <- tempfile(fileext = "qtree")
write_quadtree_ptr(path, qt)
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